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Abstract

This article provides an introduction to Schramm (stochastic)–Loewner evolution (SLE)
and to its connection with conformal field theory, from the point of view of its application
to two-dimensional critical behaviour. The emphasis is on the conceptual ideas rather than
rigorous proofs.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Historical overview

The study of critical phenomena has long been a breeding ground for new ideas in
theoretical physics. Such behaviour is characterised by a diverging correlation length
and cannot easily be approximated by considering small systems with only a few de-
grees of freedom. Initially, it appeared that the analytic study of such problems was a
hopeless task, although self-consistent approaches such as mean field theory were of-
ten successful in providing a semi-quantitative description.

Following Onsager�s calculation of the free energy of the square lattice Ising
model in 1944, steady progress was made in the exact solution of an ever-increasing
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number of lattice models in two dimensions. While many of these are physically rel-
evant, and the techniques used have spawned numerous spin-offs in the theory of
integrable systems, it is fair to say that these methods have not cast much light on
the general nature of the critical state. In addition, virtually no progress has been
made from this direction in finding analytic solutions to such simple and important
problems as percolation.

An important breakthrough occurred in the late 1960�s, with the development of
renormalisation group (RG) ideas by Wilson and others. The fundamental realisa-
tion was that, in the scaling limit where both the correlation length and all other
macroscopic length scales are much larger than that of the microscopic interactions,
classical critical systems are equivalent to renormalisable quantum field theories in
euclidean space-time. Since there is often only a finite or a denumerable set of such
field theories with given symmetries, at a stroke this explained the observed phenom-
enon of universality: systems with very different constituents and microscopic inter-
actions nevertheless exhibit the same critical behaviour in the scaling limit. This
single idea has led to a remarkable unification of the theoretical bases of particle
physics, statistical mechanics and condensed matter theory, and has led to extensive
cross-fertilisation between these disciplines. These days, a typical paper using the
ideas and methods of quantum field theory is as likely to appear in a condensed mat-
ter physics journal as in a particle physics publication (although there seems to be a
considerable degree of conservatism among the writers of field theory text books in
recognising this fact).

Two important examples of this interdisciplinary flow were the development of
lattice gauge theories in particle physics, and the application of conformal field the-
ory (CFT), first developed as a tool in string theory, to statistical mechanics and con-
densed matter physics. As will be explained later, in two-dimensional classical
systems and quantum systems in 1 + 1 dimensions conformal symmetry is extremely
powerful, and has led to a cornucopia of new exact results. Essentially, the RG pro-
gramme of classifying all suitable renormalisable quantum field theories in two
dimensions has been carried through to its conclusion in many cases, providing exact
expressions for critical exponents, correlation functions, and other universal quanti-
ties. However the geometrical, as opposed to the algebraic, aspects of conformal
symmetry are not apparent in this approach.

One minor but nevertheless theoretically influential prediction of these methods
was the conjectured crossing formula [1] for the probability that, in critical perco-
lation, a cluster should exist which spans between two disjoint segments of the
boundary of some simply connected region (a more detailed account of this prob-
lem will be given later). With this result, the simmering unease that mathematicians
felt about these methods came to the surface (see, for example, the comments in
[2]). What exactly are these renormalised local operators whose correlation func-
tions the field theorists so happily manipulate, according to rules that sometimes
seem to be a matter of cultural convention rather than any rigorous logic? What
does conformal symmetry really mean? Exactly which object is conformally invari-
ant? And so on. Aside from these deep concerns, there was perhaps also the terri-
torial feeling that percolation theory, in particular, is a branch of probability
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theory, and should be understood from that point of view, not merely as a by-
product of quantum field theory.

Thus, it was that a number of pure mathematicians, versed in the methods of
probability theory, stochastic analysis and conformal mapping theory, attacked this
problem. Instead of trying make rigorous the notions of field theory about local
operators, they focused on the random curves which form the boundaries of clus-
ters on the lattice, and on what should be the properties of the measure on such
curves in the continuum limit as the lattice spacing approaches zero. The idea of
thinking about lattice models this way was not new: in particular in the 1980s it
led to the very successful but non-rigorous Coulomb gas approach [3] to two-di-
mensional critical behaviour, whose results parallel and complement those of
CFT. However, the new approach focused on the properties of a single such curve,
conditioned to start at the boundary of the domain, in the background of all the
others. This leads to a very specific and physically clear notion of conformal invari-
ance. Moreover, it was shown by Loewner [4] in the 1920s that any such curve in
the plane which does not cross itself can be described by a dynamical process called
Loewner evolution, in which the curve is imagined to be grown in a continuous
fashion. Instead of describing this process directly, Loewner considered the evolu-
tion of the analytic function which conformally maps the region outside the curve
into a standard domain. This evolution, and therefore the curve itself, turns out to
be completely determined by a real continuous function at. For random curves, at
itself is random. (The notation at is used rather than a (t) to conform to standard
usage in the case when it is a stochastic variable.) Schramm [5] argued that, if
the measure on the curve is to be conformally invariant in the precise sense referred
to above, the only possibility is that at be one-dimensional Brownian motion, with
only a single parameter left undetermined, namely the diffusion constant j. This
leads to stochastic-, or Schramm-, Loewner evolution (SLE). (In the original papers
by Schramm et al. the term �stochastic� was used. However, in the subsequent liter-
ature the �S� has often been taken to stand for Schramm in recognition of his con-
tribution.) It should apply to any critical statistical mechanics model in which it is
possible to identify these non-crossing paths on the lattice, as long as their contin-
uum limits obey the underlying conformal invariance property. For only a few
cases, including percolation, has it been proved that this property holds, but it is
believed to be true for suitably defined curves in a whole class of systems known
as O(n) models. Special cases, apart from percolation, include the Ising model,
Potts models, the XY model, and self-avoiding walks. They each correspond to a
particular choice of j.

Starting from the assumption that SLE describes such a single curve in one of
these systems, many properties, such as the values of many of the critical exponents,
as well as the crossing formula mentioned above, have been rigorously derived in a
brilliant series of papers by Lawler, Schramm, and Werner (LSW) [6]. Together with
Smirnov�s proof [7] of the conformal invariance property for the continuum limit of
site percolation on the triangular lattice, they give a rigorous derivation [8] of the val-
ues of the critical exponents for two-dimensional percolation. This represents a par-
adigm shift in rigorous statistical mechanics, in that results are now being derived
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directly in the continuum for models for which the traditional lattice methods have,
so far, failed.

However, from the point of view of theoretical physics, these advances are perhaps
not so important for being rigorous, as for the new light they throw on the nature of
the critical state, and on conformal field theory. In the CFT of the O(n) model, the
point where a random curve hits the boundary corresponds to the insertion of a local
operator which has a particularly simple property: its correlation functions satisfy lin-
ear second-order differential equations [9]. These equations turn out to be directly re-
lated to the Fokker–Planck type equations one gets from the Brownian process which
drives SLE. Thus, there is a close connection, at least at an operational level, between
CFT and SLE. This has been made explicit in a series of papers by Bauer and Bernard
[10] (see also [11]). Other fundamental concepts of CFT, such as the central charge c,
have their equivalence in SLE. This is a rapidly advancing subject, and some of the
more recent directions will be mentioned in the concluding section of this article.

1.2. Aims of this article

The original papers on SLE are mostly both long and difficult, using, moreover,
concepts and methods foreign to most theoretical physicists. There are reviews, in
particular those by Werner [12] and by Lawler [13] which cover much of the impor-
tant material in the original papers. These are however written for mathematicians.
A more recent review by Kager and Nienhuis [14] describes some of the mathematics
in those papers in way more accessible to theoretical physicists, and should be essen-
tial reading for any reader who wants then to tackle the mathematical literature. A
complete bibliography up to 2003 appears in [15].

However, the aims of the present article are more modest. First, it does not claim
to be a thorough review, but rather a semi-pedagogical introduction. In fact some of
the material, presenting some of the existing results from a slightly different, and
hopefully clearer, point of view, has not appeared before in print. The article is di-
rected at the theoretical physicist familiar with the basic concepts of quantum field
theory and critical behaviour at the level of a standard graduate textbook, and with
a theoretical physicist�s knowledge of conformal mappings and stochastic processes.
It is not the purpose to prove anything, but rather to describe the concepts and meth-
ods of SLE, to relate them to other ideas in theoretical physics, in particular CFT,
and to illustrate them with a few simple computations, which, however, will be pre-
sented in a thoroughly non-rigorous manner. Thus, this review is most definitely not
for mathematicians interested in learning about SLE, who will no doubt cringe at the
lack of preciseness in some of the arguments and perhaps be puzzled by the partic-
ular choice of material. The notation used will be that of theoretical physics, for
example Æ� � �æ for expectation value, and so will the terminology. The word �martin-
gale� has just made its only appearance. Perhaps the largest omission is any account
of the central arguments of LSW [6] which relate SLE to various aspects of Brownian
motion and thus allow for the direct computation of many critical exponents. These
methods are in fact related to two-dimensional quantum gravity, whose role in this is
already the subject of a recent long article by Duplantier [16].
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2. Random curves and lattice models

2.1. The Ising and percolation models

In this section, we introduce the lattice models which can be interpreted in terms
of random non-intersecting paths on the lattice whose continuum limit will be de-
scribed by SLE.

The prototype is the Ising model. It is most easily realised on a honeycomb lattice
(see Fig. 1). At each site r is an Ising �spin� s (r) which takes the values ±1. The par-
tition function is

ZIsing ¼ Tr exp bJ
X
rr0

sðrÞsðr0Þ
 !

/ Tr
Y
rr0
ð1þ xsðrÞsðr0ÞÞ; ð1Þ

where x = tanhbJ, and the sum and product are over all edges joining nearest neigh-
bour pairs of sites. The trace operation is defined as Tr ¼

Q
rð12
P

sðrÞÞ, so that
Tr s (r)n = 1 if n is even, and 0 if it is odd.

At high temperatures (bJ � 1) the spins are disordered, and their correlations de-
cay exponentially fast, while at low temperatures (bJ � 1) there is long-range order:
if the spins on the boundary are fixed say, to the value +1, then Æs (r)æ „ 0 even in the
infinite volume limit. In between, there is a critical point. The conventional approach
to the Ising model focuses on the behaviour of the correlation functions of the spins.
In the scaling limit, they become local operators in a quantum field theory (QFT).
Their correlations are power-law behaved at the critical point, which corresponds
to a massless QFT, that is a conformal field theory (CFT). From this point of view
(as well as exact lattice calculations) it is found that correlation functions like
Æs (r1)s (r2)æ decay at large separations according to power laws |r1 � r2|

�2x: one of
Fig. 1. Ising model on the honeycomb lattice, with loops corresponding to a term in the expansion of (1).
Alternatively, these may be thought of as domain walls of an Ising model on the dual triangular lattice.
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the aims of the theory is to obtain the values of the exponents x as well as to com-
pute, for example, correlators depending on more than two points.

However, there is an alternative way of thinking about the partition function (1),
as follows: imagine expanding out the product to obtain 2N terms, where N is the
total number of edges. Each term may be represented by a subset of edges, or graph
G, on the lattice, in which, if the term xs (r)s (r 0) is chosen, the corresponding edge
(rr 0) is included in G, otherwise it is not. Each site r has either 0, 1, 2, or 3 edges
in G. The trace over s (r) gives 1 if this number is even, and 0 if it is odd. Each sur-
viving graph is then the union of non-intersecting closed loops (see Fig. 1). In addi-
tion, there can be open paths beginning and ending at a boundary. For the time
being, we suppress these by imposing �free� boundary conditions, summing over
the spins on the boundary. The partition function is then

ZIsing ¼
X
G

xlength; ð2Þ

where the length is the total of all the loops in G. When x is small, the mean length of
a single loop is small. The critical point xc is signalled by a divergence of this quan-
tity. The low-temperature phase corresponds to x > xc. While in this phase the Ising
spins are ordered, and their connected correlation functions decay exponentially, the
loop gas is in fact still critical, in that, for example, the probability that two points lie
on the same loop has a power-law dependence on their separation. This is the dense
phase.

The loops in G may be viewed in another way: as domain walls for another Ising
model on the dual lattice, which is a triangular lattice whose sites R lie at the centres
of the hexagons of the honeycomb lattice (see Fig. 1). If the corresponding interac-
tion strength of this dual Ising model is (bJ)*, then the Boltzmann weight for creating
a segment of domain wall is e�2(bJ)*. This should be equated to x = tanh(bJ) above.
Thus, we see that the high-temperature regime of the dual model corresponds to low
temperature in the original model, and vice versa. Infinite temperature in the dual
model ((bJ)* = 0) means that the dual Ising spins are independent random variables.
If we colour each dual site with s (R) = +1 black, and white if s (R) = �1, we have the
problem of site percolation on the triangular lattice, critical because pc ¼ 1

2
for that

problem. Thus, the curves with x = 1 correspond to percolation cluster boundaries.
(In fact in the scaling limit this is believed to be true throughout the dense phase
x > xc.)

So far we have discussed only closed loops. Consider the spin–spin correlation
function

hsðr1Þsðr2Þi ¼
Tr sðr1Þsðr2Þ

Q
rr0 ð1þ xsðrÞsðr0ÞÞ

Tr
Q

rr0 ð1þ xsðrÞsðr0ÞÞ ; ð3Þ

where the sites r1 and r2 lie on the boundary. Expanding out as before, we see that
the surviving graphs in the numerator each have a single edge coming into r1 and r2.
There is therefore a single open path c connecting these points on the boundary
(which does not intersect itself nor any of the closed loops). In terms of the dual vari-
ables, such a single open curve may be realised by specifying the spins s (R) on all the
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dual sites on the boundary to be +1 on the part of the boundary between r1 and r2
(going clockwise) and �1 on the remainder. There is then a single domain wall con-
necting r1 to r2. SLE describes the continuum limit of such a curve c.

Note that we could also choose r2 to lie in the interior. The continuum limit of
such curves is then described by radial SLE (Section 3.6).

2.1.1. Exploration process

An important property of the ensemble of curves c on the lattice is that, instead of
generating a configuration of all the s (R) and then identifying the curve, it may be
constructed step-by-step as follows (see Fig. 2). Starting from r1, at the next step
it should turn R or L according to whether the spin in front of it is +1 or �1.
For independent percolation, the probability of either event is 1/2, but for x < 1 it
depends on the values of the spins on the boundary. Proceeding like this, the curve
will grow, with all the dual sites on its immediate left taking the value +1, and those
its right the value �1. The relative probabilities of the path turning R or L at a given
step depend on the expectation value of the spin on the site R immediately in front of
it, given the values of the spins already determined, that is, given the path up to that
point. Thus, the relative probabilities that the path turns R or L are completely
determined by the domain and the path up to that point. This implies the crucial.

Property 2.1 (Lattice version). Let c1 be the part of the total path covered after a

certain number of steps. Then the conditional probability distribution of the remaining

part of the curve, given c1, is the same as the unconditional distribution of a whole curve,

starting at the tip and ending at r2 in the domain D n c1.

In the Ising model, for example, if we already know part of the domain wall, the
rest of it can be considered as a complete domain wall in a new region in which the
left and right sides of the existing part form part of the boundary. This means the
Fig. 2. The exploration process for the Ising model. At each step the walk turns L or R according to the
value of the spin in front of it. The relative probabilities are determined by the expectation value of this
spin given the fixed spins either side of the walk up to this time. The walk never crosses itself and never gets
trapped.
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path is a history-dependent random walk. It can be seen (Fig. 2) that when the grow-
ing tip s approaches an earlier section of the path, it must always turn away from it:
the tip never gets trapped. There is always at least one path on the lattice from the tip
s to the final point r2.

2.2. O(n) model

The loop gas picture of the Ising and percolation models may simply be general-
ised by counting each closed loop with a fugacity n

ZOðnÞ ¼
X
G

xlengthnnumber of loops. ð4Þ

This is called the O(n) model, for the reason that it gives the partition function for
n-component spins s (r) = (s1 (r), . . . , sn (r)) with

ZOðnÞ ¼ Tr
Y
rr0
ð1þ xsðrÞ � sðr0ÞÞ; ð5Þ

where Tr sa (r) sb (r) = dab. Following the same procedure as before we obtain the
same set of closed loops (and open paths) except that, on summing over the last spin
in each closed loop, we get a factor n. The model is called O(n) because of its sym-
metry under rotations of the spins. The version (5) makes sense only when n is a po-
sitive integer (and note that the form of the partition function is different from that
of the conventional O(n) model, where the second term is exponentiated). The form
in (4) is valid for general values of n, and it gives a probability measure on the loop
gas for real n P 0. However, the dual picture is useful only for n = 1 and n = 2 (see
below). As for the case n = 1, there is a critical value xc (n) at which the mean loop
length diverges. Beyond this, there is a dense phase.

Apart from n = 1, other important physical values of n are:

• n = 2. In this case we can view each loop as being oriented in either a clockwise or
anti-clockwise sense, giving it an overall weight 2. Each loop configuration then
corresponds to a configuration of integer valued height variables h (R) on the dual
lattice, with the convention that the nearest neighbour difference h (R 0) � h (R)
takes the values 0, +1 or �1 according to whether the edge crossed by RR 0 is
unoccupied, occupied by an edge oriented at 90� to RR 0, or at �90�. (That is,
the current running around each loop is the lattice curl of h.) The variables
h (R) may be pictured as the local height of a crystal surface. In the low-temper-
ature phase (small x) the surface is smooth: fluctuations of the height differences
decay exponentially with separation. In the high-temperature phase it is rough:
they grow logarithmically. In between is a roughening transition. It is believed
that relaxing the above restriction on the height difference h (R 0) � h (R) does
not change the universality class, as long as large values of this difference are sup-
pressed, for example using the weighting exp [�b (h (R 0) � h (R))2]. This is the dis-
crete Gaussian model. It is dual to a model of two-component spins with O(2)
symmetry called the XY model.
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• n = 0. In this case, closed loops are completely suppressed, and we have a single
non-self-intersecting path connecting r1 and r2, weighted by its length. Thus, all
paths of the same length are counted with equal weight. This is the self-avoiding
walk problem, which is supposed to describe the behaviour of long flexible poly-
mer chains. As x ! xc� , the mean length diverges. The region x > xc is the dense
phase, corresponding to a long polymer whose length is of the order of the area of
the box, so that it has finite density.

• n = �2 corresponds to the loop-erased random walk. This is an ordinary random
walk in which every loop, once it is formed, is erased. Taking n = �2 in the O(n)
model of non-intersecting loops has this effect.

2.3. Potts model

Another important model which may described in terms of random curves in the
Q-state Potts model. This is most easily considered on square lattice, at each site of
which is a variable s (r) which can take Q (initially a positive integer) different values.
The partition function is

ZPotts ¼ Tr exp bJ
X
rr0

dsðrÞ;sðr0Þ

 !
/ Tr

Y
rr0
ð1� p þ pdsðrÞ;sðr0ÞÞ ð6Þ

with ebJ = (1 � p)�1. The product may be expanded in a similar way to the case of
the Ising model. All possible graphs G will appear. Within each connected compo-
nent of G the Potts spins must be equal, giving rise to a factor Q when the trace is
performed. The result is

ZPotts ¼
X
G

pjGjð1� pÞjGjQkGk; ð7Þ

where jGj is the number of edges in G, jGj is the number in its complement, and kGk
is the number of connected components of G, which are called Fortuin–Kasteleyn
(FK) clusters. This is the random cluster representation of the Potts model. When
p is small, the mean cluster size is small. As p fi pc, it diverges, and for p > pc there
is an infinite cluster which contains a finite fraction of all the sites in the lattice. It
should be noted that these FK clusters are not the same as the spin clusters within
which the original Potts spins all take the same value.

The limit Q fi 1 gives another realisation of percolation—this time bond percola-
tion on the square lattice. For Q fi 0 there is only one cluster. If at the same time
x fi 0 suitably, all loops are suppressed and the only graphs G which contribute
are spanning trees, which contain every site of the lattice. In the Potts partition func-
tion each possible spanning tree is counted with the same weight, corresponding to
the problem of uniform spanning trees (UST). The ensemble of paths on USTs con-
necting two points r1 and r2 turns out to be be that of loop-erased random walks.

The random cluster model may be realised as a gas of dense loops in the way illus-
trated in Fig. 3. These loops lie on the medial lattice, which is also square but has



Fig. 3. Example of FK clusters (heavy lines) in the random cluster representation of the Potts model, and
the corresponding set of dense loops (medium heavy) on the medial lattice. The loops never cross the edges
connecting sites in the same cluster.
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twice the number of sites. It may be shown that, at pc, the weights for the clusters are
equivalent to counting each loop with a fugacity

ffiffiffiffi
Q

p
. Thus, the boundaries of the

critical FK clusters in the Q-state Potts model are the same in the scaling limit (if
it exists) as the closed loops of the dense phase of the O(n) model, with n ¼

ffiffiffiffi
Q

p
.

To generate an open path in the random cluster model connecting sites r1 and r2
on the boundary we must choose �wired� boundary conditions, in which p = 1 on all
the edges parallel to the boundary, from r1 to r2, and free boundary conditions, with
p = 0, along the remainder.

2.4. Coulomb gas methods

Many important results concerning the O(n) model can be derived in a non-rig-
orous fashion using so-called Coulomb gas methods. For the purposes of compari-
son with later results from SLE, we now summarise these methods and collect a few
relevant formulae. A much more complete discussion may be found in the review by
Nienhuis [3].

We assume that the boundary conditions on the O(n) spins are free, so that the
partition function is a sum over closed loops only. First orient each loop at random.
Rather than giving clockwise and anti-clockwise orientations the same weight n/2,
give them complex weights e±6iv, where n = e6iv + e�6iv = 2cos6v. These may be ta-
ken into account, on the honeycomb lattice, by assigning a weight e±iv at each vertex
where an oriented loop turns R (respectively, L). This transforms the non-local fac-
tors of n into local (albeit complex) weights depending only on the local configura-
tion at each vertex.

Next transform to the height variables described above. By convention, the
heights are taken to be integer multiples of p. The local weights at each vertex
now depend only on the differences of the three adjacent heights. The crucial
assumption of the Coulomb gas approach is that, under the RG, this model flows
to one in which the lattice can be replaced by a continuum, and the heights go over
into a gaussian free field, with partition function Z = �e�S [h] [dh], where
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S ¼ ðg=4pÞ
Z

ðrhÞ2 d2r. ð8Þ

As it stands, this is a simple free field theory. The height fluctuations grow logarith-
mically: Æ (h (r1) � h (r2))

2æ � (2/g) ln|r1 � r2|, and the correlators of exponentials of
the height decay with power laws

heiqhðr1Þe�iqhðr2Þi � jr1 � r2j�2xq ; ð9Þ
where xq = q2/2g. All the subtleties come from the combined effects of the phase fac-
tors and the boundaries or the topology. This is particularly easy to see if we con-
sider the model on a cylinder of circumference ‘ and length L � ‘. In the simple
gaussian model (8) the correlation function between two points a distance L apart
along the cylinder decays as exp (�2pxqL/‘). However, if v „ 0, loops which wrap
around the cylinder are not counted correctly by the above prescription, because
the total number of left turns minus right turns is then zero. We may arrange the cor-
rect factors by inserting e±6ivh/p at either end of the cylinder. This has the effect of
modifying the partition function: one finds lnZ � (pc/6) (L/‘) with

c ¼ 1� 6
ð6v=pÞ2

g
. ð10Þ

This dependence of the partition function is one way of determining the so-called
central charge of the corresponding CFT (Section 5). The charges at each end of
the cylinder also modify the scaling dimension xq to (1/2g)((q � 6iv/p)2 � (6iv/p)2).

The value of g may be fixed [17] in terms of the original discreteness of the height
variables as follows: adding a term �k�cos2hd2r to S in (8) ensures that, in the limit
k fi 1, h will be an integer multiple of p. For this deformation not to affect the crit-
ical behaviour, it must be marginal in the RG sense, which means that it must have
scaling dimension x2 = 2. This condition then determines g = 1 � 6v/p.

2.4.1. Winding angle distribution

A simple property which can be inferred from the Coulomb gas formulation is the
winding angle distribution. Consider a cylinder of circumference 2p and a path that
winds around it. What the probability that it winds through an angle h around the
cylinder while it moves a distance L � 1 along the axis? This will correspond to a
height difference Dh = p(h/2p) between the ends of the cylinder, and therefore an
additional free energy (g/4p)(2pL)(h/2L)2. The probability density is therefore

P ðhÞ / expð�gh2=8LÞ; ð11Þ

so that h is normally distributed with variance (4/g)L. This result will be useful later
(Section 3.6) for comparison with SLE.

2.4.2. N-leg exponent

As a final simple exponent prediction, consider the correlation function ÆUN (-
r1)UN (r2)æ of the N-leg operator, which in the language of the O(n) model is
UN ¼ sa1 ; . . . ; saN , where none of the indices are equal. It gives the probability that



92 J. Cardy / Annals of Physics 318 (2005) 81–118
N mutually non-intersecting curves connect the two points. Taking them a distance
L � ‘ apart along the cylinder, we can choose to orient them all in the same sense,
corresponding to a discontinuity in h of Np in going around the cylinder. Thus, we
can write h ¼ pNv=‘þ ~h, where 0 6 v < ‘ is the coordinate around the cylinder, and
~hðvþ ‘Þ ¼ ~hðvÞ. This gives

hUNðr1ÞUN ðr2Þi � expð�ðg=4pÞðNp=‘Þ2Lþ ðpL=6‘Þ � ðpcL=6‘ÞÞ. ð12Þ

The second term in the exponent comes from the integral over the fluctuations ~h, and
the last from the partition function. They differ because in the numerator, once there
are curves spanning the length of the cylinder, loops around it, which give the cor-
rection term in (10), are forbidden. Eq. (12) then gives

xN ¼ ðgN 2=8Þ � ðg � 1Þ2=2g. ð13Þ
3. SLE

3.1. The postulates of SLE

SLE gives a description of the continuum limit of the lattice curves connecting
two points on the boundary of a domain D which were introduced in Section 2.
The idea is to define a measure lðc;D; r1; r2Þ on these continuous curves. (Note that
the notion of a probability density of such objects does not make sense, but the more
general concept of a measure does.)

There are two basic properties of this continuum limit which must either be as-
sumed, or, better, proven to hold for a particular lattice model. The first is the con-
tinuum version of Property 3.1:

Property 3.1 (Continuum version). Denote the curve by c, and divide it into two

disjoint parts: c1 from r1 to s, and c2 from s to r2. Then the conditional measure

lðc2jc1;D; r1; r2Þ is the same as lðc2;D n c1; s; r2Þ.

This property we expect to be true for the scaling limit of all such curves in the
O(n) model (at least for n P 0), even away from the critical point. However, the sec-
ond property encodes the notion of conformal invariance, and it should be valid, if
at all, only at x = xc and, separately, for x > xc.

Property 3.2 (Conformal invariance). Let U be a conformal mapping of the interior

of the domain D onto the interior of D0, so that the points (r1, r2) on the boundary of D
are mapped to points ðr01; r02Þ on the boundary of D0. The measure l on curves in D
induces a measure U * l on the image curves in D0. The conformal invariance property

states that this is the same as the measure which would be obtained as the continuum
limit of lattice curves from r01 to r02 in D0. That is

ðU � lÞðc;D; r1; r2Þ ¼ lðUðcÞ;D0; r0 ; r0 Þ. ð14Þ
1 2
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3.2. Loewner�s equation

We have seen that, on the lattice, the curves c may be �grown� through a discrete
exploration process. The Loewner process is the continuum version of this. Because
of Property 3.2 it suffices to describe this in a standard domain D, which is taken to
be the upper half plane H, with the points r1 and r2 being the origin and infinity,
respectively.

The first thing to notice is that, although on the honeycomb lattice the growing
path does not intersect itself, in the continuum limit it might (although it still should
not cross itself.) This means that there may be regions enclosed by the path which are
not on the path but nevertheless are not reachable from infinity without crossing it.
We call the union of the set of such points, together with the curve itself, up to time t,
the hull Kt. (This is a slightly different usage of this term from that in the physics per-
colation literature.) It is the complement of the connected component of the half
plane which includes 1, itself denoted by HnKt. See Fig. 4.

Another property which often holds in the half-plane is that of reflection invariance:
the distribution of lattice paths starting from the origin and ending at 1 is invariant
under x fi �x. For the lattice paths in the O(n) model discussed in Section 2.2 this fol-
lows from the symmetry of the underlying weights, but for the boundaries of the FK
clusters in the Potts model it is a consequence of duality. Not all simple curves in lattice
models have this property. For example, if we consider the three-state Potts model in
which the spins on the negative and positive real axes are fixed to different values, there
is a simple lattice curve which forms the outer boundary of the spin cluster containing
the positive real axis. This is not the same as the boundary of the spin cluster contain-
ing the negative real axis, and it is not in general symmetric under reflections.

Since HnKt is simply connected, by the Riemann mapping theorem it can be
mapped into the standard domain H by an analytic function gt (z). Because this pre-
serves the real axis outside Kt it is in fact real analytic. It is not unique, but can be
made so by imposing the behaviour as zfi 1

gtðzÞ � zþOð1=zÞ. ð15Þ
It can be shown that, as the path grows, the coefficient of 1/z is monotonic increasing
(essentially it is the electric dipole moment of Kt and its mirror image in the real
Fig. 4. Schematic view of a trace and its hull.
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axis). Therefore, we may reparametrise time so that this coefficient is 2t. (The factor 2
is conventional.) Note that the length of the curve is not be a useful parametrisation
in the continuum limit, since the curve is a fractal.

The function gt (z) maps the whole boundary of Kt onto part of the real axis. In
particular, it maps the growing tip st to a real point at. Any point on the real axis
outside Kt remains on the real axis. As the path grows, the point at moves on the real
axis. For the path to describe a curve, it must always grow only at its tip, and this
means that the function at must be continuous, but not necessarily differentiable.

A simple but instructive example is when c is a straight line growing vertically up-
wards from a fixed point a. In this case

gtðzÞ ¼ aþ ððz� aÞ2 þ 4tÞ1=2. ð16Þ
This satisfies (15), and st ¼ 2i

ffiffi
t

p
. More complicated deterministic examples can be

found [18]. In particular, at � t1/2 describes a straight line growing at a fixed angle
to the real axis.

Loewner�s idea [4] was to describe the path c and the evolution of the tip st in
terms of the evolution of the conformal mapping gt (z). It turns out that the equation
of motion for gt (z) is simple

dgtðzÞ
dt

¼ 2

gtðzÞ � at
. ð17Þ

This is Loewner�s equation. The idea of the proof is straightforward. Imagine evolv-
ing the path for a time t, and then for a further short time dt. The image of Kt + dt

under gt is a short vertical line above the point at on the real axis. Thus, we can write,
using (16)

gtþdtðzÞ � at þ ððgtðzÞ � atÞ2 þ 4dtÞ1=2. ð18Þ
Differentiating with respect to dt and then letting dt fi 0, we obtain (17).

Note that, even if at is not differentiable (as is the case for SLE), (17) gives for each
point z0 a solution gt (z0) which is differentiable with respect to t, up to the time when
gt (z0) = at. This is the time when z0 is first included in Kt. However, it is sometimes
(see Section 5) useful to normalise the Loewner mapping differently, defining
ĝt (z) = gt (z) � at, which always maps the growing tip st to the origin. If at is not dif-
ferentiable, neither is ĝt, and the Loewner equation should be written in differential
form as dĝt = (2dt/ĝt) � dat.

Given a growing path, we can determine the hull Kt and hence, in principle, the
function gt (z) and thereby at = gt (st). Conversely, given at we can integrate (17) to
find gt (z) and hence in determine the curve (although proving that this inverse prob-
lem gives a curve is not easy).

3.3. Schramm–Loewner evolution

In the case that we are interested in, c is a random curve, so that at is a random
continuous function. What is the measure on at? This is answered by the following
remarkable result, due to Schramm [5]:
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Theorem 3.1. If Properties 3.1–3.2 hold, together with reflection symmetry, then at is

proportional to a standard Brownian motion.

That is

at ¼
ffiffiffi
j

p
Bt; ð19Þ

so that Æatæ = 0, hðat1 � at2Þ
2i ¼ jjt1 � t2j. The only undetermined parameter is j, the

diffusion constant. It will turn out that different values of j correspond to different
universality classes of critical behaviour.

The idea behind the proof is once again simple. As before, consider growing the
curve for a time t1, giving c1, and denote the remainder cnc1 = c2. Property 3.1 tells
us that the conditional measure on c2 given c1 is the same as the measure on c2 in the
domain H n Kt1 , which, by Property 3.2, induces the same measure on gt1ðc2Þ in the
domain H, shifted by at1 . In terms of the function at this means that the probability
law of at � at1 , for t > t1, is the same as the law of at�t1 . This implies that all the incre-
ments Dn ” a(n+1)dt � andt are independent identically distributed random variables,
for all dt > 0. The only process that satisfies this is Brownian motion with a possible
drift term: at ¼

ffiffiffi
j

p
Bt þ at. Reflection symmetry then implies that a = 0.

3.4. Simple properties of SLE

3.4.1. Phases of SLE

Many of the results discussed in this section have been proved by Rohde and Sch-
ramm [19]. First, we address the question of how the trace (the trajectory of st) looks
for different values of j. For j = 0, it is a vertical straight line. As j increases, the
trace should randomly turn to the L or Rmore frequently. However, it turns out that
there are qualitative differences at critical values of j. To see this, let us first study the
process on the real axis. Let xt = gt (x0) � at be the distance between the image at
time t of a point which starts at x0 and the image at of the tip. It obeys the stochastic
equation

dxt ¼
2dt
xt

�
ffiffiffi
j

p
dBt. ð20Þ

Physicists often write such an equation as _x ¼ ð2=xÞ � gt where gt is �white noise� of
strength j. Of course this does not make sense since xt is not differentiable. Such
equations are always to be interpreted in the �Ito sense,� that is, as the limit as
dt fi 0 of the forward difference equation xtþdt � xt þ ð2dt=xtÞ þ

R tþdt
t gt0 dt

0.

Eq. (20) is known as the Bessel process. (If we set Rt = (D � 1)1/2xt/2 and j2 =
4/(D � 1) it describes the distance Rt from the origin of a Brownian particle in D

dimensions.) The point xt is repelled from the origin but it is also subject to a random
force. Its ultimate fate can be inferred from the following crude argument: if we
ignore the random force, x2t � 4t, while, in the absence of the repulsive term,
hx2t i � jt. Thus, for j < 4 the repulsive force wins and the particle escapes to infinity,
while for j > 4 the noise dominates and the particle collides with the origin in finite
time (at which point the equation breaks down). A more careful analysis confirms
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this. What does this collision signify (see Fig. 5) in terms of the behaviour of the
trace? In Fig. 6, we show a trace which is about to hit the real axis at the point
x0, thus engulfing a whole region. This is visible from infinity only through a very
small opening, which means that, under gt, it gets mapped to a very small region.
In fact, as the tip st approaches x0, the size of the image of this region shrinks to zero.
When the gap closes, the whole region enclosed by the trace, as well as st and x0, are
mapped in to the single point at, which means, in particular, that xt fi 0. The above
argument shows that for j < 4 this never happens: the trace never hits the real axis
(with probability 1). For the same reason, it neither hits itself. Thus, for j < 4 the
trace c is a simple curve.

The opposite is true for j > 4: points on the real axis are continually colliding
with the image at of the tip. This means that the trace is continually touching both
itself and the real axis, at the same time engulfing whole regions. Moreover, since it
is self-similar object, it does this on all scales, an infinite number of times within
any finite neighbourhood! Eventually, the trace swallows the whole half plane:
every point is ultimately mapped into at. For j < 4 only the points on the trace
itself suffer this fate. The case j = 4 is more tricky: in fact the trace is then also
a simple curve.
Fig. 5. A hull evolved from a0 for time t1, then to infinity. The measure on the image of the rest of the
curve under gt1 is the same, according to the postulates of SLE, as a hull evolved from at1 to 1.

Fig. 6. The trace is about to hit the axis at x0 and enclose a region. At the time this happens, the whole
region including the point x0 is mapped by gt to the same point at.
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When j is just above 4, the images of points on the real axis under gt collide
with at only when there happen to be rare events when the random force is strong
enough to overcome the repulsion. When this happens, whole segments of the real
axis are swallowed at one time, corresponding to the picture described above. Con-
versely, for large j, the repulsive force is negligible except for very small xt. In that
case, two different starting points move with synchronised Brownian motions until
the one which started off closer to the origin is swallowed. Thus, the real line is
eaten up in a continuous fashion rather than piecemeal. There are no finite regions
swallowed by the trace which are not on the trace itself. This means that the trace
is space-filling: c intersects every neighbourhood of every point in the upper half
plane. We shall argue later (Section 4.3.1) that the fractal dimension of the trace
is df = 1 + j/8 for j 6 8 and 2 for j P 8. Thus, it becomes space-filling for all
j P 8.

3.4.2. SLE duality

For j > 4 the curve continually touches itself and therefore its hull Kt contains
earlier portions of the trace (see Fig. 4). However, the frontier of Kt (i.e., the bound-
ary of HnKt, minus any portions of the real axis), is by definition a simple curve. A
beautiful result, first suggested by Duplantier [20], and proved by Beffara [21] for the
case j = 6, is that locally this curve is an SLE~j, with

~j ¼ 16=j. ð21Þ
For example, the exterior of a percolation cluster contains many �fjords� which, on
the lattice, are connected to the main ocean by a neck of water which is only a finite
number of lattice spacings wide. These are sufficiently frequent and the fjords mac-
roscopically large that they survive in the continuum limit. SLE6 describes the
boundaries of the clusters, including the coastline of all the fjords. However, the
coastline as seen from the ocean is a simple curve, which is locally SLE8/3, the same
as that conjectured for a self-avoiding walk. This suggests, for example, that locally
the frontier of a percolation cluster and a self-avoiding walk are the same in the scal-
ing limit. In Section 5, we show that SLEj and SLE~j correspond to CFTs with the
same value of the central charge c.

3.5. Special values of j

3.5.1. Locality
(This subsection and the next are more technical and may be omitted at a first

reading). We have defined SLE in terms of curves which connect the origin and infin-
ity in the upper half plane. Property 3.2 then allows us to define it for any pair of
boundary points in any simply connected domain, by a conformal mapping. It is
interesting to study how the variation of the domain affects the SLE equation. Let
A be a simply connected region connected to the real axis which is at some finite dis-
tance from the origin (see Fig. 7). Consider a trace ct, with hull Kt, which grows from
the origin according to SLE in the domain HnA. According to Property 3.2, we can
do this by first making a conformal mapping h0 which removes A, and then a map ~gt



Fig. 7. An SLE hull in HnA and two different ways of removing it: either by first removing A through h0
and then using a Loewner map ~gt in the image of HnA; or by removing Kt first with gt and then removing
the image of A with ht. Since all maps are normalised, this diagram commutes.
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which removes the image ~Kt ¼ h0ðKtÞ. This would be described by SLE in h0 (HnA),
except that the Loewner �time� would not in general be the same as t. However, an-
other way to think about this is to first use a SLE map gt in H to remove Kt, then
another map, call it ht, to remove gt (A). Since both these procedures end up remov-
ing Kt [ A, and all the maps are assumed to be normalised at infinity in the standard
way (15), they must be identical, that is ht � gt ¼ ~gt � h0 (see Fig. 7). If gt maps the
growing tip st to at, then after both mappings it goes to ãt = ht (at). We would like
to understand the law of ãt.

Rather than working this out in full generality (see for example [12]), let us sup-
pose that A is a short vertical segment (x, x + i�) with �� x, and that t = dt is infin-
itesimal. Then, under gdt, x fi x + 2dt/x and � fi �(1 � 2dt/x2). The map that
removes this is (see (16))

hdtðzÞ ¼ ððz� x� 2dt=xÞ2 þ �2ð1� 2dt=x2Þ2Þ1=2 þ xþ 2dt=x. ð22Þ
To find ãdt, we need to set z ¼ adt ¼

ffiffiffi
j

p
dBt in this expression. Carefully expanding

this to first order in dt, remembering that (dBt)
2 = dt, and also taking the first

non-zero contribution in �/x, gives after a few lines of algebra

~adt ¼ ð1� �2=x2Þ
ffiffiffi
j

p
dBt þ 1

2
ðj� 6Þð�2=x3Þdt. ð23Þ

The factor in front of the stochastic term may be removed by rescaling dt: this re-
stores the correct Loewner time. But there is also a drift term, corresponding to
the effect of A. For j < 6 we see that the SLE is initially repelled from A. From
the point of view of the exploration process for the Ising model discussed in Section
2.1.1, this makes sense: if the spins along the positive real axis and on A are fixed to
be up, then the spin just above the origin is more likely to be up than down, and so c
is more likely to turn to the left.
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For j = 6, however, this is no longer the case: the presence of A does not affect the
initial behaviour of the curve. This is a particular case of the property of locality
when j = 6, which states that, for any A as defined above, the law of Kt in HnA
is, up to a time reparametrisation, the same as the law of Kt in H, as long as
Kt \ A = ;. That is, up to the time that the curve hits A, it does not know its there.
Such a property would be expected for the cluster boundaries of uncorrelated Ising
spins on the lattice, i.e., percolation. This is then consistent with the identification of
percolation cluster boundaries with SLE6.

3.5.2. Restriction

It is also interesting to work out how the local scale transforms in going from at to
ãt. A measure of this is h0tðatÞ. A similar calculation starting from (22) gives, in the
same limit as above

dðh0ðatÞÞ ¼ h0dtðadtÞ � h00ð0Þ
¼ ð�2=x3Þ

ffiffiffi
j

p
dBt þ 1

2
ð�4=x6Þ þ ðj� 8

3
Þð3�2=x4Þ

� �
. ð24Þ

Now something special happens when j = 8/3. The drift term in d(h 0 (at)) does not
then vanish, but if we take the appropriate power dðh0tðatÞ

5=8Þ it does. This implies
that the mean of h0tðatÞ

5=8 is conserved. Now at t = 0 it takes the value U0
Að0Þ

5=8, where
UA = h0 is the map that removes A. If Kt hits A at time T it can be seen from (22) that
limt!T h

0
tðatÞ

5=8 ¼ 0. On the other hand, if it never hits A then limt!1 h0tðatÞ
5=8 ¼ 1.

Therefore, U0
Að0Þ

5=8 gives the probability that the curve c does not intersect A.
This is a remarkable result in that it depends only on the value of U0

A at the start-
ing point of the SLE (assuming of course that UA is correctly normalised at infinity).
However, it has the following even more interesting consequence. Let ÛAðzÞ ¼
UAðzÞ � Uð0Þ. Consider the ensemble of all SLE8/3 in H, and the sub-ensemble
consisting of all those curves c which do not hit A. Then the measure on the image
ÛAðcÞ in H is again given by SLE8/3. The way to show this is to realise that the mea-
sure on c is characterised by the probability P (c \ A 0 = ;) that c does not hit A 0 for
all possible A 0. The probability that ÛAðcÞ does not hit A 0, given that c does not hit A,
is the ratio of the probabilities P ðc \ Û

�1

A ðA0Þ ¼ ;Þ and P (c \ A = ;). By the above
result, the first factor is the derivative at the origin of the map ÛA0 � ÛA which re-
moves A then A 0, while the second is the derivative of the map which removes A.
Thus

P ðÛAðcÞ \ A0 ¼ ;jc \ A ¼ ;Þ ¼ ðÛA0 � ÛAÞ0ð0Þ
Û

0
Að0Þ

 !5=8

¼ Û
0
A0 ð0Þ5=8

¼ P ðc \ A0 ¼ ;Þ. ð25Þ

Since this is true for all A 0, it follows that the law of ÛAðcÞ given that c does not inter-
sect A is the same as that of c. This is called the restriction property. Note that while,
according to Property 3.2, the law of an SLE in any simply connected subset of H is
determined by the conformal mapping of this subset to H, the restriction property is
stronger than this, and it holds only when j = 8/3.
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We expect such a property to hold for the continuum limit of self-avoiding walks,
assuming it exists. On the lattice, every walk of the same length is counted with the
same weight. That is, the measure is uniform. If we consider the sub-ensemble of
such walks which avoid a region A, the measure on the remainder should still be uni-
form. This will be true if the restriction property holds. This supports the identifica-
tion of self-avoiding walks with SLE8/3.

3.6. Radial SLE and the winding angle

So far we have discussed a version of SLE that gives a conformally invariant mea-
sure on curves which connect two distinct boundary points of a simply connected
domain D. For this reason it is called chordal SLE. There are variants which describe
other situations. For example, one could consider curves c which connect a given
point r1 on the boundary to an interior point r2. The Riemann mapping theorem al-
lows us to map conformally onto another simple connected domain, with r2 being
mapped to any preassigned interior point. It is simplest to choose for the standard
domain the unit disc U, with r2 being mapped to the origin. So we are considering
curves c which connect a given point eih0 on the boundary with the origin. As before,
we may consider growing the curve dynamically. Let Kt be the hull of that portion
which exists up to time t. Then there exists a conformal mapping gt which takes UnKt

to U, such that gt (0) = 0. There is one more free parameter, which corresponds to a
global rotation: we use this to impose the condition that g0tð0Þ is real and positive.
One can then show that, as the curve grows, this quantity is monotonically increas-
ing, and we can use this to reparametrise time so that g0tð0Þ ¼ et. This normalised
mapping then takes the growing tip st to a point eiht on the boundary.

Loewner�s theorem tells us that _gtðzÞ=gtðzÞ, when expressed as a function of gt (z),
should be holomorphic in U apart from a simple pole at eiht . Since gt preserves the
unit circle outside Kt; _gtðzÞ=gtðzÞ should be pure imaginary when |gt (z)| = 1, and in
order that g0tð0Þ ¼ et, it should approach 1 as gt (z)fi 0. The only possibility is

dgtðzÞ
dt

¼ �gtðzÞ
gtðzÞ þ eiht

gtðzÞ � eiht
. ð26Þ

This is the radial Loewner equation. In fact this is the version considered by Löewner
[4].

It can now be argued, as before, that given Properties 3.1 and 3.2 (suitably re-
worded to cover the case when r2 is an interior point) together with reflection, ht
must be proportional to a standard Brownian motion. This defines radial SLE. It
is not immediately obvious how the radial and chordal versions are related. How-
ever, it can be shown that, if the trace of radial SLE hits the boundary of the unit
disc at eiht1 at time t1, then the law of Kt in radial SLE, for t < t1, is the same chordal
SLE conditioned to begin at eih(0) and end at eiht1 , up to a reparametrisation of time.
This assures us that, in using the chordal and radial versions with the same j, we are
describing the same physical problem.

However, one feature that the trace of radial SLE possesses which chordal SLE
does not is the property that it can wind around the origin. The winding angle at time
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t is simply ht � h0. Therefore, it is normally distributed with variance jt. At this
point we can make a connection to the Coulomb gas analysis of the O(n) model
in Section 2.4.1, where it was shown that the variance in the winding angle on a cyl-
inder of length L is asymptotically (4/g)L. A semi-infinite cylinder, parametrised by
w, is conformally equivalent to the unit disc by the mapping z = e�w. Asymptotically,
Rew fi Rew � t under Loewner evolution. Thus, we can identify L � t and hence

j ¼ 4=g. ð27Þ
3.6.1. Identification with lattice models

This result allows use tomake a tentative identification with the various realisations
of the O(n) model described in Section 2.2. We have, using (27), n = �2cos(4p/j) with
2 6 j 6 4 describing the critical point at xc, and 4 < j 6 8 corresponding to the dense
phase. Some important special cases are therefore:

• j = �2: loop-erased random walks (proven in [24]);
• j = 8/3: self-avoiding walks, as already suggested by the restriction property, Sec-
tion 3.5.2; unproven, but see [22] for many consequences;

• j = 3: cluster boundaries in the Ising model, however, as yet unproven;
• j = 4: BCSOS model of roughening transition (equivalent to the 4-state Potts
model and the double dimer model), as yet unproven; also certain level lines of
a gaussian random field and the �harmonic explorer� (proven in [23]); also believed
to be dual to the Kosterlitz–Thouless transition in the XY model;

• j = 6: cluster boundaries in percolation (proven in [7]);
• j = 8: dense phase of self-avoiding walks; boundaries of uniform spanning trees
(proven in [24]).

It should be noted that no lattice candidates for j > 8, or for the dual values j < 2,
have been proposed. This possibly has to do with the fact that, for j > 8, the SLE
trace is not reversible: the law on curves from r1 to r2 is not the same as the law ob-
tained by interchanging the points. Evidently, curves in equilibrium lattice models
should satisfy reversibility.
4. Calculating with SLE

SLE shows that the measure on the continuum limit of single curves in various
lattice models is given in terms of one-dimensional Brownian motion. However, it
is not at all clear how thereby to deduce interesting physical consequences. We first
describe two relatively simple computations in two-dimensional percolation which
can be done using SLE.
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4.1. Schramm�s formula

Given a curve c connecting two points r1 and r2 on the boundary of a domain D,
what is the probability that it passes to the left of a given interior point? This is not a
question which is natural in conventional approaches to critical behaviour, but
which is very simply answered within SLE [25].

As usual, we can consider D to be the upper half plane, and take r1 = a0 and r2 to
be at infinity. The curve is then described by chordal SLE starting at a0. Label the
interior point by the complex number f.

Denote the probability that c passes to the left of f by P ðf;�f;a0Þ (we include the
dependence on �f to emphasise the fact that this is a not a holomorphic function).
Consider evolving the SLE for an infinitesimal time dt. The function gdt will map
the remainder of c into its image c 0, which, however, by Properties 3.1 and 3.2, will
have the same measure as SLE started from adt ¼ a0 þ

ffiffiffi
j

p
dBt. At the same time,

f fi gdt (f) = f + 2dt/(f � a0). Moreover, c 0 lies to the left of f 0 iff c lies to the left
of f. Therefore

P ðf;�f;a0Þ ¼ hP fþ 2dt=ðf� a0Þ;�fþ 2dt=ð�f� a0Þ; a0 þ
ffiffiffi
j

p
dBt

� �
i; ð28Þ

where the average Æ. . .æ is over all realisations of Brownian motion dBt up to time dt.
Taylor expanding, using ÆdBtæ = 0 and Æ (dBt)

2æ = dt, and equating the coefficient of
dt to zero gives

2

f� a0

o

of
þ 2
�f� a0

o

o�f
þ j

2

o
2

oa20

� �
P ðf;�f;a0Þ ¼ 0. ð29Þ

Thus, P satisfies a linear second-order partial differential equation, typical of condi-
tional probabilities in stochastic differential equations.

By scale invariance P in fact depends only on the angle h subtended between
f � a0 and the real axis. Thus, (29) reduces to an ordinary second-order linear differ-
ential equation, which is in fact hypergeometric. The boundary conditions are that
P = 0 and 1 when h = p and 0, respectively, which gives (specialising to j = 6)

P ¼ 1

2
þ

Cð2
3
Þffiffiffi

p
p

Cð1
6
Þ ðcot hÞ2F 1

1

2
;
2

3
;
3

2
;� cot2h

� �
. ð30Þ

Note that this may also be written in terms of a single quadrature since one solution
of (29) is P = const.

4.2. Crossing probability

Given a critical percolation problem inside a simply connected domain D, what is
the probability that a cluster connects two disjoint segments AB and CD of the
boundary? This problem was conjectured to be conformally invariant and (probably)
first studied numerically in [26]. A formula based on CFT as well as a certain amount
of guesswork was conjectured in [1]. It was proved, for the continuum limit of site
percolation on the triangular lattice, by Smirnov [7].
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Within SLE, it takes a certain amount of ingenuity [5] to relate this problem to a
question about a single curve. As usual, let D be the upper half plane. It is always
possible to make a fractional linear conformal mapping which takes AB into
(�1, x1) and CD into (0, x2), where x1 < 0 and x2 > 0. Now go back to the lattice
picture and consider critical site percolation on the triangular lattice in the upper half
plane, so that each site is independently coloured black or white with equal proba-
bilities 1/2. Choose all the boundary sites on the positive real axis to be white, all
those on the negative real axis to be black (see Fig. 8). There is a cluster boundary
starting at the origin, which, in the continuum limit, will be described by SLE6. Since
j > 4, it repeatedly hits the real axis, both to the L and R of the origin. Eventually
every point on the real axis is swallowed. Either x1 is swallowed before x2, or vice
versa.

Note that every site on the L of the curve is black, and every site on its R is white.
Suppose that x1 is swallowed before x2. Then, at the moment it is swallowed, there
exists a continuous path on the white sites, just to the R of the curve, which connects
(0,x2) to the row just above (�1,x1). On the other hand, if x2 is swallowed before
x1, there exists a continuous path on the black sites, just to the L of the curve, con-
necting 0� to a point on the real axis to the R of x2. This path forms a barrier (as in
the game of Hex) to the possibility of a white crossing from (0,x2) to (�1,x1).
Hence there is such a crossing if and only if x1 is swallowed before x2 by the SLE
curve.
Fig. 8. Is there a crossing on the white discs from (0,x2) to (�1,x1)? This happens if and only if x1 gets
swallowed by the SLE before x2.
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Recall that in Section 3.4.1 we related the swallowing of a point x0 on the real axis
to the vanishing of xt = gt (xt) � at, which undergoes a Bessel process on the real line.
Therefore

Prðcrossing fromð0; x2Þ to ð�1; x1ÞÞ ¼ Prðx1tvanishes before x2tÞ. ð31Þ
Denote this by P (x1,x2). By generalising the SLE to start at a0 rather than 0, we can
write a differential equation for this in similar manner to (29)

2

x1 � a0

o

ox1
þ 2

x2 � a0

o

ox2
þ j

2

o2

oa20

� �
Pðx1; x2;a0Þ ¼ 0. ð32Þ

Translational invariance implies that we can replace oa0 by �ðox1 þ ox2Þ. Finally, P
can in fact depend only on the ratio g = (x2 � a0)/(a0 � x1), which again reduces
the equation to hypergeometric form. The solution is (specialising to j = 6 for per-
colation)

P ¼
Cð2

3
Þ

Cð4
3
ÞCð1

3
Þ g

1=3
2F 1

1

3
;
2

3
;
4

3
;g

� �
. ð33Þ

It should be mentioned that this is but one of a number of percolation crossing for-
mulae. Another, conjectured by Watts [27], for the probability that there is cluster
which simultaneously connects AB to CD and BC to DA, has since been proved
by Dubédat [28]. However, other formulae, for example for the mean number of dis-
tinct clusters connecting AB and CD [29], and for the probability that exactly N dis-
tinct clusters cross an annulus [30], are as yet unproven using SLE methods.

4.3. Critical exponents from SLE

Many of the critical exponents which have previously been conjectured by Cou-
lomb gas or CFT methods may be derived rigorously using SLE, once the underlying
postulates are assumed or proved. However SLE describes the measure on just a sin-
gle curve, and in the papers of LSW a great deal of ingenuity has gone into showing
how to relate this to all the other exponents. There is not space in this article to do
these justice. Instead we describe three examples which give the flavour of the argu-
ments, which initially may appear quite unconventional compared with the more tra-
ditional approaches.

4.3.1. The fractal dimension of SLE

The fractal dimension of any geometrical object embedded in the plane can be
defined roughly as follows: let N (�) be the minimum number of small discs of ra-
dius � required to cover the object. Then if Nð�Þ � ��df as � fi 0, df is the fractal
dimension.

One way of computing df for a random curve c in the plane is to ask for the prob-
ability P (x,y, �) that a given point f = x + iy lies within a distance � of c. A simple
scaling argument shows that if P behaves like �df (x,y) as � fi 0, then d = 2 � df.
We can derive a differential equation for P along the lines of the previous calculation.
The only difference is that under the conformal mapping gdt; � ! jg0dtðfÞj� �
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ð1� 2dtReð1=f2ÞÞ�. The differential equation (written for convenience in cartesian
coordinates) is

2x
x2 þ y2

o

ox
� 2y
x2 þ y2

o

oy
þ j

2

o2

ox2
� 2ðx2 � y2Þ

ðx2 þ y2Þ2
�
o

o�

 !
P ¼ 0. ð34Þ

Now P is dimensionless and therefore should have the form ð�=rÞ2�df times a func-
tion of the polar angle h. In fact, the simple ansatz P ¼ �2�df yaðx2 þ y2Þb, with
a + 2b = df � 2 satisfies the equation. [The reason this works is connected with the
simple form for the correlator ÆU2/2,1/2,1æ discussed in Section 5.4.1.] This gives
a = (j � 8)2/8j, b = (j � 8)/2j, and

df ¼ 1þ j=8. ð35Þ
This is correct for j 6 8: otherwise there is another solution with a = b = 0 and
df = 2. A more careful statement and proof of this result can be found in [31].

We see that the fractal dimension increases steadily from the value 1 when j = 0
(corresponding to a straight line) to a maximum value of 2 when j = 8. Beyond this
value c becomes space-filling: every point in the upper half plane lies on the curve.

4.3.2. Crossing exponent

Consider a critical percolation problem in the upper half plane. What is the
asymptotic behaviour as rfi 1 of the probability that the interval (0,1) on the real
axis is connected to the interval (r,1)? We expect this to decay as some power of r.
The value of this exponent may be found by taking the appropriate limit of the cross-
ing formula (33), but instead we shall compute it directly. In order for there to be a
crossing cluster, there must be two cluster boundaries which also cross between the
two intervals, and which bound this cluster above and below. Denote the upper
boundary by c. Then we need to know the probability P (r) of there being another
spanning curve lying between c and (1, r), averaged over all realisations of c. Because
of the locality property, the measure on c is independent of the existence of the lower
boundary, and is given by SLE6 conditioned not to hit the real axis along (1, r). Note
that because j > 4 it will eventually hit the real axis at some point to the right of r.
For this reason we can do the computation for general j > 4, although it gives the
actual crossing exponent only if j = 6.

Consider the behaviour of P (r) under the conformal mapping ĝdtðzÞ � zþ
ð2dt=zÞ �

ffiffiffi
j

p
dBt (which maps the growing tip st into 0). The crossing probability

should be conformally invariant and depend only on the ratio of the lengths of
the two intervals, hence, by an argument which by now should be familiar

P ðrÞ ¼ hP ðĝdtðrÞ=ĝdtð1ÞÞi. ð36Þ

Expanding this out, remembering as usual that (dBt)
2 = dt, and setting to zero the

O(dt) term, we find for r � 1

ðj� 2ÞrP 0ðrÞ þ 1
2
jr2P 00ðrÞ ¼ 0 ð37Þ

with the solution P (r) � r�(j�4)/j for j > 4. Setting j = 6 then gives the result 1/3.
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4.3.3. The one-arm exponent

Consider critical lattice percolation inside some finite region (for example a disc of
radius R). What is the probability that a given site (e.g., the origin) is connected to a
finite segment S of the boundary? This should decay like R�k, where k is sometimes
called the one-arm exponent. If we try to formulate this in the continuum, we
immediately run up against the problem that all clusters are fractal with dimension
<2, and so the probability of any given point being in any given cluster is zero. In-
stead, one may ask about the probability P (r) that the cluster connected to S gets
within a distance r of the origin. This should behave like (r/R)k. We can now set
R = 1 and treat the problem using radial SLE6.

Consider now a radial SLEj which starts at eih0 . If j > 4 it will continually hit the
boundary. Let P (h � h0, t) be the probability that the segment (h0,h) of the boundary
has not been swallowed by time t. Then, by considering the evolution as usual under gdt

P ðh; h0; tÞ ¼ hP ðhþ dh; h0 þ dh0; t � dtÞi; ð38Þ
where dh = cot((h � h0)/2)dt and dh0 ¼

ffiffiffi
j

p
dBt. Setting h0 = 0 and equating to zero

the O(dt) term, we find the time-dependent differential equation

otP ¼ cotðh=2ÞohP þ 1
2
jo2hP . ð39Þ

This has the form of a backwards Fokker–Plank equation.
Now, since g0tð0Þ ¼ et, it is reasonable that, after time t, the SLE gets within a dis-

tance O(e�t) of the origin. Therefore, we can interpret P as roughly the probability
that the cluster connected to (0,h) gets within a distance r � e�t of the origin. A more
careful argument [32] confirms this. The boundary conditions are P (0, t) = 0 as
h fi 0, and (with more difficulty) ohP (h, t) = 0 at h = 2p. The solution may then be
found by inspection to be

P / e�kt sinðh=4Þð Þ1�4=j
; ð40Þ

where k = (j2�16)/32j. For percolation this gives 5/48, in agreement with Coulomb
gas arguments [3].

The appearance of differential operators such as that in (39) will become clear
from the CFT perspective in Section 5.4.1. If instead of choosing Neuman boundary
conditions at h = 2p we impose P = 0, the same equation gives the bulk two-leg
exponent x2, which is also related to the fractal dimension by df = 2� x2.
5. Relation to conformal field theory

5.1. Basics of CFT

The reader who already knows a little about CFT will have recognised the differ-
ential equations in Section 4 as being very similar in form to the BPZ equations [33]
satisfied by the correlation functions of a /2,1 operator, corresponding to a highest
weight representation of the Virasoro algebra with a level 2 null state.
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For those readers for whom the above paragraph makes no sense, and in any case
to make the argument self-contained, we first introduce the concepts of (boundary)
conformal field theory (BCFT). We stress that these are heuristic in nature—they
serve only as a guide to formulating the basic principles of CFT which can then
be developed into a mathematically consistent theory. For a longer introduction
to BCFT see [34] and, for a complete account of CFT [35].

We have at the back of our minds a euclidean field theory defined as a path inte-
gral over some set of fundamental fields {w (r)}. The partition function is
Z = �e�S({w})[dw] where the action SðfwgÞ ¼

R
D
LðfwgÞd2r is an integral over a local

lagrangian density. These fields may be thought of as smeared-out continuum ver-
sions of the lattice degrees of freedom. As in any field theory, this continuum limit
involves renormalisation. There are so-called local scaling operators /ð0Þ

j ðrÞ which
are particular functionals of the fundamental degrees of freedom, which have the
property that we can define renormalised scaling operators /jðrÞ ¼ a�xj/ð0Þ

j ðrÞ whose
correlators are finite in the continuum limit a fi 0, that is

lim
a!0

a
�
P

j
xjh/ð0Þ

1 ðr1Þ . . ./ð0Þ
N ðrNÞi ¼ h/1ðr1Þ . . ./N ðrN Þi ð41Þ

exists. The numbers xj are called the scaling dimensions, and are related to the var-
ious critical exponents. They are related to the conformal weights ðhj; �hjÞ by
xj ¼ hj þ �hj; the difference hj � �hj ¼ sj is called the spin of /j, and describes its behav-
iour under rotations. There are also boundary operators, localised on the boundary,
which have only a single conformal weight equal to their scaling dimension.

The theory is developed independently of any particular set of fundamental fields
or lagrangian. An important role in this is played by the stress tensor T lm (r), defined
as the local response of the action to a change in the metric:

dS ¼ ð1=4pÞ
Z
D

T lmdglm d
2r. ð42Þ

Invariance under local rotations and scale transformations usually implies that T lm is
symmetric and traceless: T l

l ¼ 0. This also implies invariance under conformal trans-
formations, corresponding to dglm � f (r)glm.

In two-dimensional flat space, infinitesimal coordinate transformations
rl ! r0l ¼ rl þ alðrÞ correspond to infinitesimal transformations of the metric with
dglm = �(olal + omam). It is important to realise that under these transformations the
underlying lattice, or UV cut-off, is not transformed. Otherwise they would amount
to a trivial reparametrisation. For a conformal transformation, al (r) is given by an
analytic function: in complex coordinates ðz;�zÞ, o�zaz ¼ 0, so a z ” a (z) is holomorphic.
However, such a function cannot be small everywhere (unless it is constant), so it is nec-
essary to consider coordinate transformations which are not everywhere conformal.

Consider therefore two concentric semicircles C1 and C2 in the upper half plane,
centred on the origin, and of radii R1 < R2. For |r| < R1 let al be conformal, with
az = a (z), while for |r| > R2 take al = 0. In between, al is not conformal, but is dif-
ferentiable, so that dS ¼ ð�1=2pÞ

R
R1<jrj<R2

T lmolam d
2r. This can be integrated by parts

to give a term ð1=2pÞ
R
R1<jrj<R2

olT lmam d
2r (which must vanish because am is arbitrary
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in this region, implying that olT
lm = 0) and two surface terms. That on C2 vanishes

because al = 0 there. We are left with

dS ¼ ð1=2pÞ
Z
C1

T lmal�
mk d‘k; ð43Þ

where d‘k is the line element along C1.
The fact that Tlm is conserved means, in complex coordinates, that o�zT zz ¼

ozT �z�z ¼ 0, so that the correlations functions of T (z) ” Tzz are holomorphic functions
of z, while those of T 	 T �z�z are antiholomorphic. Eq. (43) may then be written

dS ¼ ð1=2piÞ
Z
C1

T ðzÞaðzÞdzþ c:c: ð44Þ

In any field theory with a boundary, it is necessary to impose some boundary con-
dition. It can be argued that any translationally invariant boundary condition flows
under the RG to conditions satisfying Txy = 0, which in complex coordinates means
that T ¼ T on the real axis. This means that the correlators of T are those of T ana-
lytically continued into the lower half plane. The second term in (44) may then be
dropped if the contour in the first term is around a complete circle.

The conclusion of all this is that the effect of an infinitesimal conformal transfor-
mation on any correlator of observables inside C1 is the same as inserting a contour
integral �T (z)a (z)dz/2pi into the correlator.

Another important element of CFT is the operator product expansion (OPE) of
the stress tensor with other local operators. Since T is holomorphic, this has the
form

T ðzÞ � /ð0Þ ¼
X
n

z�n�2/ðnÞð0Þ; ð45Þ

where the /(n) are (possibly new) local operators. By taking a (z) � z (corresponding
to a scale transformation) we see that /(0) = h/, where h is its scaling dimension.
Similarly, by taking a = const., /(�1) = ox/. Local operators for which /(n) vanishes
for n P 1 are called primary. T itself is not primary: its OPE with itself takes the
form

T ðzÞ � T ð0Þ ¼ c=2z4 þ ð2=z2ÞT ð0Þ þ ð1=zÞozT ð0Þ þ � � � ; ð46Þ
where c is the conformal anomaly number, ubiquitous in CFT. For example, the par-
tition function on a long cylinder of length L and circumference ‘ behaves as
exp(pcL/‘), cf. (10).

5.2. Radial quantisation

This is the most important concept in understanding the link between SLE and
CFT. We introduce it in the context of boundary CFT. As before, suppose there
is some set of fundamental fields {w (r)}, with a Gibbs measure e�S[w][dw]. Let C
be a semicircle in the upper half plane, centered on the origin. The Hilbert space
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of the BCFT is the function space (with a suitable norm) of field configurations {wC}
on C.

The vacuum state is given by weighting each state jw0
Ci by the (normalised) path

integral restricted to the interior of C and conditioned to take the specified values w0
C

on the boundary

j0i ¼
Z

½dw0
C

Z
wC¼w0

C

½dw
e�S½w
jw0
Ci. ð47Þ

Note that because of scale invariance different choices of the radius of C are equiv-
alent, up to a normalisation factor.

Similarly, inserting a local operator / (0) at the origin into the path integral de-
fines a state |/æ. This is called the operator-state correspondence of CFT. If we also
insert (1/2pi)�Czn+1T (z)dz, where C lies inside C, we get a state Ln|/æ. The Ln act lin-
early on the Hilbert space. From the OPE (45) we see that Ln|/æ � |/(n)æ, and that, in
particular, L0|/æ = h/|/æ. If / is primary, Ln|/æ = 0 for n P 1. From the OPE (46) of
T with itself follow the commutation relations for the Ln

½Ln; Lm
 ¼ ðn� mÞLnþm þ 1
12
cnðn2 � 1Þdn;�m; ð48Þ

which are known as the Virasoro algebra. The state |/æ together with all its descen-
dants, formed by acting on |/æ an arbitrary number of times with the Ln with n 6 �1,
give a highest weight representation (where the weight is defined as the eigenvalue
of �L0).

There is another way of generating such a highest weight representation. Suppose
the boundary conditions on the negative and positive real axes are both conformal,
that is they satisfy T ¼ T , but they are different. The vacuum with these boundary
conditions gives a highest weight state which it is sometimes useful to think of as cor-
responding to the insertion of a �boundary condition changing� (bcc) operator at the
origin. An example is the continuum limit of an Ising model in which the spins on the
negative real axis are �1, and those on the positive axis are +1.

5.3. Curves and states

In this section, we describe a way of associating states in the Hilbert space of the
BCFT with the growing curves of the Loewner process. This was first understood by
Bauer and Bernard [10], but we shall present the arguments slightly differently.

The boundary conditions associated with a bcc operator guarantee the existence,
on the lattice, of a domain wall connecting the origin to infinity. Given a particular
realisation c, we can condition the Ising spins on its existence. We would like to be
able to assume that this property continues to hold in the continuum limit: that is, we
can condition the fields {w} on the existence of a such a curve. However, this in-
volves conditioning on an event with probability zero: it turns out that in general
the probability that, with respect to the measure in the path integral, the probability
that a domain wall hits the real axis somewhere in an interval of length � vanishes
like �h. In what follows we shall regard � as small but fixed, and assume that the usual
properties of SLE are applicable to this more general case.
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Any such curve may be generated by a Loewner process: denote as before the part
of the curve up to time t by ct. The existence of this curve depends on only the field
configurations w in the interior of C, as long as ct lies wholly inside this region. Then
we can condition the fields contributing to the path integral on the existence of ct,
thus defining a state

jcti ¼
Z

½dw0
C

Z
wC¼w0

C;ct
½dw
e�S½w
jw0

Ci. ð49Þ

The path integral (over the whole of the upper half plane, not just the interior of C),
when conditioned on ct, gives a measure dl(ct) on these curves. The state

jhi ¼ jhti 	
Z

dlðctÞjcti ð50Þ

is in fact independent of t, since it is just given by the path integral conditioned on
there being a curve connecting the origin to infinity, as guaranteed by the boundary
conditions. In fact we see that |hæ is just the state corresponding to a boundary con-
dition changing operator at the origin.

However, dl (ct) is also given by the measure on at in Loewner evolution, through
the iterated sequence of conformal mappings satisfying dĝt = 2dt/ĝt � dat. This cor-
responds to an infinitesimal conformal mapping of the upper half plane minus Kt. As
explained in the previous section, dĝt corresponds to inserting (1/2pi)�C (2dt/
z � dat)T (z)dz. In operator language, this corresponds to acting on |ctæ with
2L�2dt � L�1dat where Ln = (1/2pi)�C zn+1T (z)dz. Thus, for any t1 < t

jgt1ðctÞi ¼ T exp

Z t1

0

2L�2 dt0 � L�1dat0ð Þ
� �

jcti; ð51Þ

where T denotes a time-ordered exponential.
The measure on ct is the product of the measure of ct n ct1 , conditioned on ct1 , with

the unconditioned measure on ct1 . The first is the same as the unconditioned measure
on gt1ðctÞ, and the second is given by the measure on at0 for t 0 2 [0, t1]. Thus, we can
rewrite both the measure and the state in (50) as

jhti¼
Z

dlðgt1ðctÞÞ
Z

dlðat0;t02½0;t1
ÞTexp

Z 0

t1

ð2L�2dt0 �L�1dat0 Þ
� �

jgt1ðctÞi. ð52Þ

For SLE, at is proportional to a Brownian process. The integration over realisations
of this for t 0 2 [0, t1] may be performed by breaking up the time interval into small
segments of size dt, expanding out the exponential to O(dt), using (Bdt)

2 � dt, and
re-exponentiating. The result is

jhti ¼ expð�ð2L�2 � ðj=2ÞL2
�1Þt1Þjht�t1i. ð53Þ

But, as we argued earlier, |htæ is independent of t, and therefore

ð2L�2 � ðj=2ÞL2
�1Þjhi ¼ 0. ð54Þ

This means that the descendant states L�2|hæ and L2
�1jhi are linearly dependent. We

say that the Virasoro representation corresponding to |hæ has a null state at level 2.
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From this follow an number of important consequences. Acting on (54) with L1 and
L2, and using the Virasoro algebra (48) and the fact that L1|hæ = L2|hæ = 0 while
L0|hæ = h|hæ, leads to:

h ¼ h2;1 ¼
6� j
2j

; ð55Þ

c ¼ ð3j� 8Þð6� jÞ
2j

. ð56Þ

These are the fundamental relations between the parameter j of SLE and the data of
CFT. The conventional notation h2,1 comes from the Kac formula in CFT which we
do not need here. In fact this is appropriate to the case j < 4: for j > 4 it corresponds
to h1,2. (To further confuse the matter, some authors reverse the labels.) Note that the
boundary exponent h parametrises the failure of locality in (23). From CFT we may
also deduce that, with respect to the path integral measure, the probability that a
curve connects small intervals of size � about points r1, r2 on the real axis behaves like

�2h2;1h/2;1ðr1Þ/2;1ðr2Þi /
�

jr1 � r2j

� �2h2;1

. ð57Þ

Such a result, elementary in CFT, is difficult to obtain directly from SLE in which the
curves are conditioned to begin and end at given points.

Note that the central charge c vanishes when either locality (j = 6) or restriction
(j = 8/3) hold. These cases correspond to the continuum limit of percolation and
self-avoiding walks, respectively, corresponding to formal limits Qfi 1 in the Potts
model and n fi 0 in the O(n) model for which the unconditioned partition function is
trivial.

5.4. Differential equations

In this section, we discuss how the linear second order differential equations for
various observables which arise from the stochastic aspect of SLE follow equiva-
lently from the null state condition in CFT. In this context they are known as the
BPZ equations [33]. As an example consider Schramm�s formula (30) for the prob-
ability P that a point f lies to the right of c, or equivalently the expectation value
of the indicator function OðfÞ which is 1 if this is satisfied and zero otherwise. In
SLE, this expectation value is with respect to the measure on curves which connect
the point a0 to infinity. In CFT, as explained above, we can only consider curves
which intersect some �-neighbourhood on the real axis. Therefore P should be writ-
ten as a ratio of expectation values with respect to the CFT measure

P ðf;a0Þ ¼ lim
r2!1

h/2;1ða0ÞOðfÞ/2;1ðr2Þi
h/2;1ða0Þ/2;1ðr2Þi

. ð58Þ

We can derive differential equations for the correlators in the numerator and denom-
inator by inserting into each of them a factor (1/(2pi)�Ca (z)T (z)dz + c.c., where
a (z) = 2/(z�a0), and C is a small semicircle surrounding a0. This is equivalent to
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making the infinitesimal transformation z fi z + 2�/(z � a0). As before, the c.c. term
is equivalent to extending the contour in the first term to a full circle. The effect of
this insertion may be evaluated in two ways: by shrinking the contour onto a0 and
using the OPE between T and /2,1 we get

2L�2/2;1ða0Þ ¼ ðj=2ÞL2
�1/2;1ða0Þ ¼ o2a0/2;1ða0Þ; ð59Þ

while wrapping it about f (in a clockwise sense) we get

� 2=ðf� a0Þð ÞofO� 2=ð�f� a0Þ
� �

o�fO. ð60Þ

The effect on /2,1 (r2) vanishes in the limit r2 fi 1. As a result we can ignore the var-
iation of the denominator in this case. Equating (59) and (60) inside the correlation
function in the numerator then leads to the differential equation (29) for P found in
Section 4.1.

5.4.1. Calogero–Sutherland model

While many of the results of SLE may be re-derived in CFT with less rigour but
perhaps greater simplicity, the latter contains much more information which is not
immediately apparent from the SLE perspective. For example, one may consider
correlation functions Æ/1,2 (r1)/1,2 (r2) � � �/2,1 (rN) � � � æ of multiple boundary condi-
tion changing operators with other operators either in the bulk or on the bound-
ary. Evaluating the effect of an insertion (1/2pi)�CT (z)dz/(z � rj) where C
surrounds rj leads to a second order differential equation satisfied by the correla-
tion function for each j.

This property is very powerful in the radial version. Consider the correlation
function

CUðh1; . . . ; hN Þ ¼ h/2;1ðh1Þ � � �/2;1ðhN ÞUð0Þi ð61Þ

of N/2,1 operators on the boundary of the unit disc with a single bulk operator U at
the origin. Consider the effect of inserting (1/2pi)�Caj (z)T (z)dz, where (cf. (26))

ajðzÞ ¼ �z
zþ eihj

z� eihj
ð62Þ

and C surrounds the origin. Once again, this may be evaluated in two ways: by tak-
ing C up to the boundary, with exception of small semicircles around the points eihk ,
we get GjCU, where Gj is the second order differential operator

Gj ¼ � j
2

o2

oh2j
þ h2;1

6
þ c
12

�
X
k 6¼j

cot
hk � hj

2

o

ohk
� 1

2sin2ðhk � hjÞ=2
h2;1

 !
. ð63Þ

The first three terms come from evaluating the contour integral near eihj , where aj
acts like 2L�2 � 1

6
L0 � c

12
(the term c

12
comes from the curvature of the boundary),

and the term with k „ j from the contour near eihk , where it acts like
ajðeihk ÞL�1 þRea0jðeihk ÞL0.

On the other hand, shrinking the contour down on the origin we see that aj (z) =
z + O(z2), so that on U (0) it has the effect of L0 þ L0 þ � � �, where the omitted terms
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involve the Ln and Ln with n > 0. Assuming that U is primary, these other terms van-
ish, leaving simply ðL0 þ L0ÞU ¼ xUU. Equating the two evaluations we find the dif-
ferential equation

GjCU ¼ xUCU. ð64Þ

In general there is an (N � 1)-dimensional space of independent differential opera-
tors Gj with a common eigenfunction CU. (There is one fewer dimension because they
all commute with the total angular momentum

P
j(o/ohj).) For the case N = 2, set-

ting h = h2 � h1, we recognise the differential operator in Section 4.3.3.
In general these operators are not self-adjoint and their spectrum is difficult to

analyse. However, if we form the equally weighted linear combination
G 	

PN
j¼1Gj, the terms with a single derivative may be written in the formP

k(oV/ohk) (o/ohk) where V is a potential function. In this case it is well known from
the theory of the Fokker–Plank equation that G is related by a similarity transfor-
mation to a self-adjoint operator. In fact [36] if we form |WN|

2/jG|WN|
�2/j, where

WN ¼
Q

j<kðeihj � ehk Þ is the �free-fermion� wave function on the circle, the result
is, up to calculable constants the well-known N-particle Calogero–Sutherland
hamiltonian

HN ðbÞ ¼ � 1

2

XN
j¼1

o2

oh2j
þ bðb� 2Þ

16

X
j<k

1

sin2ðhj � hkÞ=2
ð65Þ

with b = 8/j. It follows that the scaling dimensions of bulk operators like U are sim-
ply related to eigenvalues KN of HN by

xU ¼ ðj=NÞKN ð8=jÞ � ð4=jNÞEff
N þ 1

6
h2;1 þ 1

12
c; ð66Þ

where Eff
N ¼ 1

24
NðN 2 � 1Þ. Similarly CU is proportional to the corresponding eigen-

function. In fact the ground state (with conventional boundary conditions) turns
out to correspond to the bulk N-leg operator discussed in Section 2.4.2. The corre-
sponding correlator is |WN|

2/j.
6. Related ideas

6.1. Multiple SLEs

We pointed out earlier that the boundary operators /2,1 correspond to the contin-
uum limits of lattice curves which hit the boundary at a given point. For a single
curve, these are described by SLE, and we have shown in that case how the resulting
differential equations also appear in CFT. Using the N-particle generalisation of the
CFT results of the previous section, we may now �reverse engineer� the problem and
conjecture the generalisation of SLE to N curves.

The expectation value of some observable O given that N curves, starting at the
origin, hit the boundary at (h1, . . . ,hN) is
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POðh1; . . . ; hN Þ ¼
F Oðh1; . . . ; hNÞ
F 1ðh1; . . . ; hN Þ

; ð67Þ

where F O ¼ hO/2;1ðeih1Þ . . ./2;1ðeihN ÞUN ð0Þi. This satisfies the BPZ equation

GjF O ¼ hðdjO/2;1ðeih1Þ . . ./2;1ðeihN ÞUN ð0Þi; ð68Þ

where djO is the variation in O under aj. If we now write F O ¼ F 1 � PO and use the fact
that GjF1 = xUF1, we find a relatively simple differential equation for PO, since the
non-derivative terms in Gj cancel. There is also a complication since the second deriv-
ative gives a cross term proportional to ðohjF 1ÞðohjPOÞ. However, this may be evalu-
ated from the explicit form F1 = |WN|

2/j. The result is

j
2

o
2

oh2j
þ
X
k 6¼j

cot
hk � hj

2

o

ohk
� o

ohj

� � !
PO ¼ djPO; ð69Þ

where the right-hand side comes from the variation in O.
The left-hand side may be recognised as the generator (the adjoint of the Fokker–

Planck operator) for the stochastic process:

dhj ¼
ffiffiffi
j

p
dBt þ

X
k=26¼j

qk=2 cot ðhj � hkÞ=2
� �

dt; ð70Þ

dhk ¼ cotððhk � hjÞ=2Þdt; ð71Þ
where qk = 2. [For general values of the parameters qk this process is known as (ra-
dial) SLEðj;~qÞ, although this is more usually considered in the chordal version. It
has been argued [37] that this applies to the level lines of a free gaussian field with
piecewise constant Dirichlet boundary conditions: the parameters qk are related to
the size of the discontinuities at the points eihk . SLEðj;~qÞ has also been used to give
examples of restriction measures on curves which are not reflection symmetric [38].]

We see that eihj undergoes Brownian motion but is also repelled by the other par-
ticles at eihk ðk 6¼ jÞ: these particles are themselves repelled deterministically from eihj .
The infinitesimal transformation aj corresponds to the radial Loewner equation

dgj;t
dt

¼ �gj;t
gj;t þ eihj;t

gj;t � eihj;t
. ð72Þ

The conjectured interpretation of this is as follows: we have N non-intersecting
curves connecting the boundary points eihk;0 to the origin. The evolution of the jth
curve in the presence of the others is given by the radial Loewner equation with,
however, the driving term not being simple Brownian motion but instead the more
complicated process (70) and (71).

However, from the CFT point of view we may equally well consider the linear
combination

P
jGj. The Loewner equation is now

_gt ¼ �gt
XN
j¼1

gt þ eihj;t

gt � eihj;t
; ð73Þ

where
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dhj ¼
ffiffiffi
j

p
dBj

t þ 2
X
k 6¼j

cotððhj � hkÞ=2Þdt. ð74Þ

This is known in the theory of random matrices as Dyson�s Brownian motion. It de-
scribes the statistics of the eigenvalues of unitary matrices. The conjectured interpre-
tation is now in terms of N random curves which are all growing in each other�s
mutual presence at the same mean rate (measured in Loewner time). From the point
of view of SLE, it is by no means obvious that the measure on N curves generated by
process (70)–(72) is the same as that given by (73) and (74). However, CFT suggests
that, for curves which are the continuum limit of suitable lattice models, this is in-
deed the case.

6.2. Other variants of SLE

So far we have discussed only chordal SLE, which describes curves connecting
distinct points on the boundary of a simple connected domain, and radial SLE, in
which the curve connects a boundary point to an interior point. Another simple var-
iant is dipolar SLE [39], in which the curve is constrained to start at boundary point
and to end on some finite segment of the boundary not containing the point. The
canonical domain is an infinitely long strip, with the curve starting a point on one
edge and ending on the other edge. This set-up allows the computation of several
interesting physical quantities.

The study of SLE in multiply connected domains is very interesting. Their confor-
mal classes are characterised by a set of moduli, which change as the curve grows.
Friedrich and Kalkkinen [40] have argued that SLE in such a domain is character-
ised by diffusion in moduli space as well as diffusion on the boundary.

It is possible to rewrite the differential equations which arise from null state con-
ditions in extended CFTs (for example super-conformal CFTs [41] and WZWN
models [42]) in terms of the generators of stochastic conformal mappings which gen-
eralise that of Loewner. However, a physical interpretation in terms of the contin-
uum limit of lattice curves appears so far to be missing.

6.3. Other growth models

SLE is in fact just one very special, solvable, example of an approach to growth
processes in two dimensions using conformal mappings which has been around for a
number of years. For a recent review see [43]. The prototypical problem of this type
is diffusion-limited aggregation (DLA). In this model of cluster formation, particles
of finite radius diffuse in, one by one, from infinity until they hit the existing cluster,
where they stick. The probability of sticking at a given point is proportional to the
local electric field, if we imagine the cluster as being charged. The resultant highly
branched structures are very similar to those observed in smoke particles, and in vis-
cous fingering experiments where one fluid is forced into another in which it is
immiscible. Hastings and Levitov [44] proposed an approach to this problem using
conformal mappings. At each time t, the boundary of the cluster is described by the
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conformal mapping ft (z) which takes it to the unit disc. The cluster is grown by add-
ing a small semicircular piece to the boundary. The way this changes ft is well known
according to a theorem of Hadamard. The difficulty is that the probability of adding
this piece at a given point depends on the local electric field which itself depends on
f 0
t . The equation of motion for ft is therefore more complicated than in SLE. More-
over, it may be shown that almost all initially smooth boundary curves evolve to-
wards a finite-time singularity: this is thought to be responsible for branching, but
just at this point the equations must be regularised to reflect the finite size of the par-
ticles (or, in viscous fingering, the effects of finite surface tension.)

It is also possible to generate branching structures by making the driving term at
in Loewner�s equation discontinuous, for example taking it to be a Levy process.
Unfortunately this does not appear to describe a physically interesting model.

Finally, Hastings [45] has proposed two related growth models which each lead,
in the continuum limit, to SLE. These are very similar to DLA, except that growth
is only allowed at the tip. The first, called the arbitrary Laplacian random walk,
takes place on the lattice. The tip moves to one of the neighbouring unoccupied sites
r with relative probability E (r)g, where E (r) is the lattice electric field, that is the
potential difference between the tip and r, and g is a parameter. The second growth
model takes place in the continuum via iterated conformal mappings, in which
pieces of length ‘1 are added to the tip, but shifted to the left or right relative to
the previous growth direction by a random amount ±‘2. This model depends on
the ratio ‘2/‘1, and leads, in the continuum limit, to SLEj with j = ‘2/4‘1. For
the lattice model there is no universal relation between j and g, except for g = 1,
which is the same as the loop-erased random walk (Section 2.2) and converges to
SLE2.
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